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 Abstract 

 Online misinformation has crept into the public consciousness through discourse on topics 

 ranging from presidential elections to the COVID-19 pandemic. Misinformation-containing 

 statements spread both farther and faster than true statements on social networks, suggesting the 

 need for an interpretable, algorithmic flagging mechanism. This investigation endeavors to 

 devise such an algorithm based on cognitively-plausible explanations for misinformation’s 

 virality: informational novelty and emotional valence. I use next-word prediction error measures 

 from a GPT-2 model fine-tuned on true news stories from Reuters to assess the novelty 

 component of this problem and a pre-trained RoBERTa-based sentiment classifier for the 

 emotional-valence component. To create a classification model, I calculated the joint distribution 

 of these errors and sentiments over a subset of true news stories and misinformation-containing 

 stories from the ISOT Fake News dataset. I then used this joint distribution to predict the 

 likelihood that unseen news stories contain misinformation. This model classifies news stories 

 with around 79.4% accuracy, furthering prior work showing similarity in next-word prediction 

 between human readers and generative models like GPT-2. These results also indicate that online 

 misinformation may be classifiable through computable and cognitively-interpretable 

 natural-language metrics. 
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 I.  Introduction 

 “They’re lying to you,” announced the poster-board sign interrupting coverage from First 

 Channel, a Kremlin-backed outlet and one of the main sources of news for Russian citizens. The 

 protestor—who had briefly appeared onscreen to suggest that the Russian state media was 

 producing disinformation regarding the war in Ukraine—was arrested within seconds 

 (Krause-Jackson, 2022). The COVID-19 pandemic proved to be another testing ground for the 

 impact of online misinformation on our daily lives, with recent studies linking exposure to 

 misinformation with higher rates of vaccine hesitancy across both Democrats and Republicans 

 (Pierri et al., 2022; Loomba et al., 2022; Lee et al., 2022). With such high-profile examples in the 

 media, the saliency and immediacy of mis- and disinformation spread online has quickly entered 

 the international consciousness. 

 In their particularly alarming study, Vosoughi et al. (2018) find that tweets containing 

 false information are over 70 percent more likely to be retweeted—spreading “significantly 

 farther, faster, deeper, and more broadly”—than tweets containing true information. As of 2018, 

 the authors observed three main spikes in the total number of false tweets: the 2012 and 2016 

 American presidential elections and the 2014 Russian annexation of Crimea, suggesting that 

 false political information is particularly salient. What could explain this difference in virality 

 between true and false information? Can we use data collected about misinformation to model its 

 linguistic qualities? One place to start along this line of inquiry would be to consider the ways in 

 which we already know misinformation-containing statements differ from those that do not 

 contain misinformation. Responses to false statements online indicate that 

 misinformation-containing statements disproportionately inspire reactions of “surprise” or 

 “shock” and “anger” or “disgust” in comparison to true statements’ inspiring of “sadness” and 
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 “trust” (Vosoughi et al., 2018; Pennycook & Rand, 2021). This narrows the scope of our 

 previous questions: from modeling misinformation, can we instead model statements that may 

 inspire surprise or anger? 

 This investigation will endeavor to answer a part of this question through analyzing some 

 of the ways in which misinformation is differentially communicated online. Aligned with the 

 research above, I hypothesize that misinformation is communicated with a greater, more negative 

 emotional valence and is more surprising to readers, more often violating their expectations of 

 what words will be used. Further, I predict that these two factors are computationally measurable 

 and the two classes of statements will vary significantly in these measures. Finally, I predict that 

 this difference will allow for the construction of a model that accurately predicts whether a 

 previously-unseen statement contains misinformation. 

 Such a result would prove both novel and significant for several reasons. As was revealed 

 in leaked Facebook internal documents, human content moderators at large social media 

 companies are struggling to stem the growing tide of misinformation on their platforms 

 (Seetharaman et al., 2021). This highlights the need for alternative methods of flagging posts that 

 potentially contain misinformation. Several studies (see Khan et al., 2021; Islam et al., 2020; 

 Wang, 2017 for reviews) demonstrate that a variety of machine learning models perform 

 well-above chance levels at identifying statements that contain misinformation, but the models 

 are limited in explicability; many models are essentially black boxes, lacking clear justifications 

 for each classification (but see Shu et al., 2019). This investigation attempts to leverage the 

 power and speed of algorithmic classification while maintaining explicability: instead of the 

 traditional machine-learning strategy of text-classification with labels only, the classifications 
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 here will be done based on the pre-defined, cognitively-informed features of negative sentiment 

 and surprise (as measured by next-word prediction error). 

 Recent advances in natural language processing (NLP) and large language models 

 (LLMs) allow for this computational analysis of sentiment and surprise. Sentiment 

 classifiers—machine-learning algorithms designed to detect the emotional content of 

 natural-language statements—are a well-established aspect of NLP research today. This opens 

 one algorithmic door for this investigation: do sentiment classifiers rate statements containing 

 misinformation as significantly more negative than others, thereby echoing the subjective 

 responses of anger or disgust? As for the surprise element of misinformation, Goldstein et al. 

 (2021) find—in ways which I will unpack later in this paper—that LLMs make similar 

 predictions as humans in next-word prediction tasks. Of paramount importance to this 

 investigation, however, they also find that LLMs and humans overlap in their confidence ratings 

 and predictability judgements (calculated as cross-entropy, see  Methods  section below) regarding 

 the words that do appear next in these tasks. These similarities suggest a possibility that LLMs 

 could reliably identify statements that humans find surprising—thereby potentially providing the 

 second piece to our algorithmic puzzle. 

 II.  Background 

 A.  LLMs 

 As a foundation, let us begin by explaining what LLMs are and how they work. This 

 section will start with a brief introduction to two key ideas in modern language 

 modeling—neural networks and distributional semantics—and how those ideas contribute to the 
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 development of particular transformer models like GPT-2 (Radford et al., 2019) and RoBERTa 

 (Devlin et al., 2018; Liu et al., 2019). 

 1.  Neural Networks 

 Since the inception of the field now-known as ‘Artificial Intelligence,’ researchers in 

 computer science and cognitive science have endeavored to find algorithmic accounts for the 

 complex behavior exhibited by human beings. Much of the early research in this direction 

 focused on ‘symbolic’ models, essentially programs that could—to a very limited 

 degree—emulate some human behaviors through concatenating many pre-defined ‘if-then’ 

 statements familiar to symbolic logic and computer science. One of these symbolic models 

 relevant to the current investigation was Weizenbaum’s (1966) ELIZA, a program that could 

 converse with a user based on the presence of keywords in the user’s input text. A clear 

 limitation of these symbolic models, however, was their rigidity—in the absence of those certain 

 keywords, a program like ELIZA loses its appearance as ‘intelligent.’ Naturally, scientists began 

 to look for other solutions, some of which had been under development alongside symbolic 

 models. 

 The key breakthrough in this new direction—‘Connectionist’ models—came with 

 Rosenblatt’s (1958) Perceptron model. Instead of operating by strict ‘if-then’ rules, the 

 Perceptron gradually adjusts its output through a pre-defined system of operations over several 

 iterations of input data. A quintessential problem that a Perceptron model is able to approximate 

 is linear classification: given two classes of data (‘blue dots’ coded as 0s and ‘red dots’ coded as 

 1s, for example), what is the optimal straight line that divides the data cleanly into these two 

 classes? Such a line would take something of the form: 
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 Where the  x  ’s represent the input data of each dot  and the  w  ’s are the ‘weights’, all of these 

 products summing to the output  y  . This output  y  then  undergoes an ‘activation function,’ which 

 transforms the continuous output to a discrete one—either 0 or 1. Keeping with our above 

 example, the problem now is: given a ‘blue dot’ represented by a vector of  x  ’s, what are the 

 appropriate weights that will transform that input data in such a way that the output becomes 0? 

 In a different light, this process is a matrix multiplication: 

 The Perceptron starts with a random weights vector, and changes these weights depending on the 

 accuracy of the output prediction after seeing each input example. After many trials, the weights 

 vector is such that the resulting line separates the classes of dots as well as it can, minimizing a 

 pre-defined loss function. 

 For more complicated outputs, such as confidence in  n  possible outputs represented by an 

 vector, many of these perceptrons can be linked  together—the output of each serving as  𝑛 ×  1 

 an input to the next layer. The resulting matrix multiplication is thus able to capture much more 

 nuance than the simple perceptron; these large models are known as neural networks and have 

 become the dominant paradigm in artificial intelligence and machine learning research in recent 

 years (Sejnowski, 2019). 
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 2.  Distributional Semantics 

 Stepping aside from computer science for a moment, let us examine a linguistic theory 

 that intersects with the above discussion at the key junction of LLMs: distributional semantics. 

 The central idea behind this theory of word meanings is well-phrased by Harris (1970): 

 If we consider words or morphemes A and B to be more different in meaning than A and 

 C, then we will often find that the distributions of A and B are more different than the 

 distributions of A and C. In other words, difference of meaning correlates with difference 

 of distribution. 

 Rephrasing the above in a way that will be useful for us later, a sufficiently-detailed accounting 

 of the different contexts in which certain words appear comes to correlate with the differences in 

 meanings those words may have from each other (what qualifies as ‘sufficiently-detailed’ is 

 ambiguous, and we will see later that the size of this context-window has important implications 

 for the current investigation). Such a claim necessitates empirical backing, however—can 

 theories of distributional semantics account for human linguistic behavior? 

 Researchers vary substantially in their views on the degree to which the distributional 

 hypothesis is a plausible cognitive or psychological account of word-meaning representation. 

 Several experiments (e.g. McDonald & Ramscar, 2001; Mandera et al., 2017) find positive 

 evidence that contextual variation and word co-occurrence impact semantic similarity 

 judgements, semantic priming, and other related tasks. Additionally, humans appear to be 

 extremely attuned to rates of word co-occurrence, with these rates reflected in adult gaze 

 duration in reading tasks and infant gaze duration when presented with sequences of frequently 

 and infrequently co-occuring words (Smith & Levy, 2013; Skarabela et al., 2021). On the other 

 hand, Lake & Murphy (2021) critique interpretations of these results as being indicative of a 

 distributional-semantic cognitive model, instead emphasizing the importance of embodiment and 
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 multimodal knowledge on learning word meanings. However, Grand et al. (2022) more recently 

 show that certain manipulations on the representations learned from word co-occurrence reveal 

 more nuanced similarity judgements—such as similarity in ‘size’ as independent of similarity in 

 ‘dangerousness’—than previous experiments, perhaps countering Lake & Murphy’s claim that 

 multimodal knowledge is necessary for making these more nuanced judgements. 

 Regardless of the cognitive plausibility of distributional models, this understanding of a 

 connection between word-context and word-meaning is what gives modern LLMs their 

 predictive power. Recalling the dot-labeling example above, consider a different kind of 

 classification problem: given a word (or sequence of words)—represented as a numerical vector, 

 an  embedding  —in a certain text, what weights should  be applied in the multiplication process 

 such that the resulting vector represents the  next  word in the text? Scaling this process up to the 

 level of larger and larger matrices, answering this question results in a weight-matrix that, given 

 an input embedding, predicts the next word in the sequence solely based on the  context  in which 

 that input has appeared before—the distributional hypothesis embodied algorithmically. 

 3.  Transformers 

 The combination of the above two ideas hinted at in the previous paragraph has proven 

 fruitful ground for years of research in NLP, spawning a variety of model architectures (see Lake 

 & Murphy, 2021 for a review). One of these architectures—the transformer (Vaswani et al., 

 2017)—has become a primary focus for NLP in recent years and is the variety employed by this 

 investigation, so it is worth explaining here in some detail. 

 These models are trained, essentially, on countless fill-in-the-blank tasks from real-world 

 sources, such as website pages and digitized books. Given a sentence like “I am thirsty, so I am 
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 looking for a water _______” a model would then output a vector with a particular numerical 

 value for each token (not quite a word, but analogous), which then can be transformed into a 

 probability distribution over the next possible word. Suppose our model-in-training assigns a 

 higher probability to the token “cat” than any other token, and thereby guesses that “cat” fills in 

 the blank above. Given that the actual token was “fountain,” our model’s guess would be noted 

 as incorrect and the weights-matrix adjusted accordingly. Over many, many trials of such 

 guesses, we would hope that the resulting weights-matrix would result in more accurate 

 predictions. In short, each guessing attempt would look something like: 

 For each word  w  i  and its preceding context. However,  if the preceding context is very long (a 

 book, for example), such a calculation quickly becomes intractable. This is where the size of the 

 context-window comes into play, as well as a key innovation of the transformer model: 

 self-attention. 

 First, a bit of background and vocabulary is necessary. Recurrent neural networks 

 (RNNs) made strides forward in NLP through allowing each next-word guess to be informed not 

 only by the embedding of the previous word, but also by the hidden states (columns of the 

 weights-matrix) computed in the previous guess (Tunstall et al., 2022). Therefore, as an RNN 

 processes a string of text, contextual information about previous words and their relationship to 

 each other gets passed along, allowing for a more nuanced prediction than if each guess was 

 informed solely by the average embedding of previous words (which would be a bit like asking 

 someone to predict the next word in a scrambled sentence). However, taking each of the previous 

 steps into account when computing a next step again reaches an information bottleneck. Which 

 steps are more important than others? The advent of  attention  for RNNs provides a way around 
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 this bottleneck, as the models learn relative weights for each processing step along the way 

 (Tunstall et al., 2022). 

 Another breakthrough came in both speed and performance when transformer 

 models—eschewing the ‘recurrent’ aspect of RNNs—entered the scene with a modified version 

 of the attention mechanism:  self-attention  . Self-attention  transforms the initial token embeddings 

 into weighted averages of all the embeddings in an input sequence—essentially pre-computing 

 how relevant each token in the input is for the interpretation of the other tokens in the string 

 (Tunstall et al., 2022). Such a process makes the task of disambiguating homonyms like “bank” 

 much easier for algorithms to handle. 

 This line of research, from neural networks and distributional semantics to attention and 

 self-attention, led to the meteoric rise in transformer LLMs like GPT and BERT. Both of these 

 models (  Generative Pre-Trained Transformers  and  Bidirectional  Encoder Representations from 

 Transformers  , respectively) learn their weights-matrices  through the kinds of repetitive 

 fill-in-the-blank tasks as described above, although with a slight difference between them. 

 BERT—as implied by the  bidirectional  aspect of its  nomenclature—is trained on masked 

 sequences like: “I am thirsty, so I am ______ for a water fountain.” GPT, on the other hand, 

 guesses the words in the string sequentially from left to right, more like the initial example 

 above. GPT thus exhibits a closer proximity to human reading or listening behavior and displays 

 significant similarities to human judgements in these next-word tasks in several experiments 

 (Caucheteux et al., 2023; Goldstein et al., 2022; Wilcox et al., 2020; Golan et al., 2022; Schrimpf 

 et al., 2021). 
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 B.  Misinformation 

 Keeping these developments in mind, let us now turn to the cognitive science at play in 

 exposure to misinformation, or language that lacks coherence with the actual state of the world. 

 As briefly mentioned in the introduction, this paper will focus primarily on  political 

 misinformation. Additionally, there has been a flurry of recent studies exploring the psychology 

 and cognitive science of misinformation and its viral effects due to a plethora of factors (see 

 DeAngelis, 2023: the American Psychological Association’s  Trends Report  on misinformation); 

 the current investigation will focus on only two: novelty and negative emotional valence. 

 One especially important aspect of misinformation and how it is processed is its novelty. 

 Recall Vosoughi et al. (2018)’s finding that tweets containing misinformation are 70 percent 

 more likely to be retweeted than those that do not contain misinformation. By their very nature, 

 statements containing misinformation will trend towards novelty from a cognitive perspective: 

 we expect continuity with what we observe in the world around us, any deviation from that 

 continuity—any deviation from that coherence—will register as a prediction error, as something 

 novel. This novelty is part of what contributes to false tweets’ vitality: novelty is 

 attention-grabbing (consider visual oddball tasks, or the gaze-duration-versus-word-frequency 

 tasks in Smith & Levy, 2013; Skarabela et al., 2021). Accordingly, Vosoughi et al. (2018)—in 

 analyzing tweets in response to viral, false tweets—find that responses to misinformation are 

 characterized by an expression of surprise. 

 Another key aspect in which misinformation infiltrates the information ecosystem is 

 through its appeal to strong emotions. In concert with the effects of novelty, Brady et al. (2020) 

 find that more emotionally-laden tweets draw earlier visual attention and garner more retweets 

 than less-emotional posts. Vosoughi et al. (2018) and Brady et al. (2017) have identified the 
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 increased emotional valence of viral misinformation through sentiment analysis of tweets in 

 response to misinformation-containing tweets and noting the increased virality of tweets 

 containing words categorized as “moral-emotional language.” Additionally, Martel et al. (2020) 

 find that readers' emotional state  before  they read  the misinformation statement contributed to 

 their belief—with more heightened emotions correlating with higher degrees of belief in false 

 information—revealing a destructive spiral: users are exposed to large amounts of emotionally 

 salient content, encouraging a heightened emotional state, and this valence as well as the 

 inevitable repetition only serves to increase their belief  in the content’s truthfulness. 

 III.  Methods 

 A.  Dataset 

 A good place to start with a data-driven exploration of misinformation is with an 

 appropriate dataset. I have chosen the ISOT Fake News Dataset compiled by Ahmed et al. 

 (2018) due to its large number of news stories (44,898), focus on political stories, clear division 

 into true and false news stories (with the true news stories all published by Reuters and the false 

 news stories from sources rated untrustworthy by Politifact), and balanced coverage of news 

 stories from both within the United States and around the world as well as from both left- and 

 right-leaning sources. See Figure 1 (next page) for a detailed description of how I utilized the 

 dataset in the various stages of this experiment, to be elaborated upon in the rest of this section. 

 B.  GPT-2 

 I used two GPT-2 (Radford et al., 2019) models in this experiment: one pretrained 

 (downloaded from HuggingFace with no additional fine-tuning) and one that I fine-tuned on a 
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 Fig. 1  : Clockwise from top: LM (True): these stories  were used to fine-tune the GPT-2 model used in calculating 
 cross-entropy; Train (Fake): these stories were used to build distributions of cross-entropy and emotional content for 
 false news stories; Train (True): same as previous, but distributions for true news stories; Test (Fake): these stories 
 are sampled from to test the conditional Bayesian predictions from the generated distributions; Test (True): same as 
 previous; Unused: these are fake stories that would otherwise bias the training data—there was a large excess of fake 
 stories due to the use of true stories in the LM dataset—or stories where only the title and label were provided in the 
 dataset, not the body of the text. 

 subset of the true news stories in the dataset. I chose GPT-2 over larger or more recent models 

 due to the cognitive-scientific literature that explicitly compared GPT-2 and human 

 next-word-prediction (Caucheteux et al., 2023; Goldstein et al., 2022; Wilcox et al., 2020; Golan 

 et al., 2022; Schrimpf et al., 2021). Other model architectures have not been tested in similar 

 contexts, or have been found to be less aligned with human judgements than GPT-2. 

 The fine-tuning process entails repeating the next-word-prediction task on new examples 

 particular to the experimental circumstance: in this case, that means adjusting the weights-matrix 

 so as to make more accurate predictions on true news stories. I chose to use a fine-tuned model 

 to 1) generally test the effects of fine-tuning on news stories on model behavior and 2) mimic 

 next-word-predictions of an ‘informed consumer’ in news stories. 
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 The crucial measurement extracted from the predictions of both GPT-2 models was 

 next-word prediction loss, or  cross-entropy  , an information-theoretic measure of the difference 

 between two probability distributions. Following Goldstein et al. (2022), the two distributions 

 measured here were the models’ predicted probability distribution over the next word and a 

 one-hot ‘distribution’ that assigns the  actual  next  word a probability of 1 and all other 

 next-words a probability of 0. The cross-entropy  H  of a particular prediction is calculated as 

 follows: 

 For a predicted distribution  q  and one-hot distribution  p  over  n  possible next-words in the 

 vocabulary (  x  i  ). Below (see Figure 2, next page) is  a toy example (with actual GPT-2 outputs) of 

 a  q  (blue) distribution and  p  (red) ‘distribution’  on the water fountain example from earlier, 

 showing the top ten most probable next tokens. Given the one-hot nature of the  p  ‘distribution,’ 

 the above cross-entropy calculation is equivalent to the simpler: 

 Where  q(w)  is the predicted probability of the actual  next word  w  . This is the more familiar 

 equation for surprisal, which is a term I will avoid using so as to not conflate the notion with the 

 aforementioned aspect of subjective surprise. For whole news stories, an average cross-entropy 

 was calculated by taking the mean of the cross-entropies (surprisals) of each prediction-word 

 distribution pair across the story. 
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 Fig. 2  : Left: the ten tokens GPT-2 assigns the highest  probability to following the input string; Right: the one-hot 
 distribution representing the actual next token 

 C.  RoBERTa 

 Thus far, we have focused on the next-word-prediction capabilities of LLMs like GPT 

 and BERT. However, Radford et al. (2017) introduced the idea that LLMs may harbor 

 representations in their weights-matrices that reliably predict  other  meaningful features of the 

 input text, namely the sentiment content of that text. This indicated that LLMs are successful 

 with certain tasks of transfer-learning, or applying the same weights used in pre-training to an 

 entirely new task. Barbieri et al. (2020)—taking advantage of this transfer-learning 

 success—fine-tuned a RoBERTa model (Liu et al., 2019), a modified version of BERT, to 

 classify the sentiment of tweets into positive, neutral, or negative. I used Barbieri et al. (2020)’s 

 sentiment classifier model to analyze the sentiment of the news statements in this investigation, 

 as many of the misinformation studies cited above focused on the characteristics of 

 misinformation posted specifically on Twitter. 
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 D.  Building the Distributions 

 As indicated in Figure 1, I took a subset of the news stories and calculated 1) the 

 average-cross entropy of the pre-trained model, 2) the average cross-entropy of the fine-tuned 

 model, and 3) the sentiment classification from the RoBERTa model for each story. For the 

 sentiment classification, I transformed the discrete classification output into a continuous value 

 by assigning each label an integer value (-1 for negative, 0 for neutral, 1 for positive), 

 multiplying each integer label by the classifier’s confidence in that label, and summing these 

 products. Thus, instead of the model simply outputting ‘neutral,’ for example, it may output a 

 value of -0.3 for a neutral-leaning-negative sentiment or a 0.3 for a neutral-leaning-positive 

 sentiment. 

 After calculating these values for all of the training examples, I then created probability 

 density functions to represent the distribution of these values by story veracity (see  Results 

 section below for plots). 

 E.  Joint classifier 

 Taking sentiment distribution as an example, the following conditional probabilities for a 

 particular sentiment score  S  can be read from the  density functions for true stories (  T  ) and false 

 stories (  F  ): 

 Which can then be flipped (via Bayes rule) to the following: 
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 These conditional probabilities, then, appear as a prediction of whether or not a given story is 

 true or false based on the evidence from the story’s sentiment value and prior values of the rate at 

 which true and false stories appear. 

 However, as discussed in the  Background  section above,  misinformation appears to not 

 only vary on its emotional valence, but also how surprising it is to readers. I am accounting for 

 this ‘surprising’ nature of misinformation with the average cross-entropy (CE) of the story, 

 yielding the following joint conditional probabilities: 

 I then used  these  conditional probabilities to predict  the category of unseen stories during the 

 testing phase, with the story classified according to which probability comes out greater. I set the 

 priors to the actual rate of true and false stories appearing in the testing dataset, roughly 

 two-thirds false and one-third true. 

 F.  Procedure 

 Putting all of the above together, the experimental procedure proceeded as follows: 1) 

 divide the dataset into language model, training, and testing partitions; 2) fine-tune a GPT-2 

 model on the language model partition using the Hugging Face  Trainer  class; 3) extract average 

 cross-entropy and sentiment scores for each news story in the training partition; 4) calculate the 

 distributions of average cross-entropy and sentiment for true and false news stories; 5) extract 

 average cross-entropy and sentiment scores for each news story in the testing partition; 6) predict 

 which category the test-set stories belong to through the Bayesian method outlined above; 7) 
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 repeat steps 1-6 twice more with different dataset partitions; 8) aggregate results across each 

 repetition. 

 IV.  Results 

 This investigation endeavored to discern any differences in two cognitively-plausible 

 metrics between ‘true’ and ‘fake’ news stories: average cross-entropy in the stories and 

 continuous sentiment score (labels multiplied by confidence and summed) for the stories. For 

 calculating the average cross-entropy, two models were used: one pre-trained GPT-2 model 

 downloaded from Hugging Face, and one GPT-2 model fine-tuned on a subset of true news 

 stories. The differences in these distributions were then used to define a Bayesian classifier that 

 would predict the label (veracity) of news stories in a held-out test set. The results shown in this 

 section primarily describe the first of three cross-validations; see  Appendix  for more details of 

 the other two cross-validations. 

 A.  Differences in Cross-Entropy and Sentiment 

 Both the pre-trained and fine-tuned GPT-2 models show significant differences in 

 average cross-entropy between true and fake news stories (pre-trained: two-tailed independent 

 t-test, t = 42.03, p < 0.0001; fine-tuned: two-tailed independent t-test, t = 62.98, p < 0.0001). 

 However, the fine-tuned model shows a greater difference in average cross-entropy than the 

 pre-trained model between the two news types (see Figure 3, next page). In both cases, the fake 

 news stories exhibited higher average-cross entropies than the true news stories, aligning with 

 the initial hypothesis. 
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 Model  Veracity  N  Mean  StDev 
 Pretrained  True  6405  6.067  0.298 
 Pretrained  False  6405  6.316  0.368 
 Finetuned  True  6405  6.431  0.410 
 Finetuned  False  6405  6.927  0.478 

 Fig 3  : Top Left: distributions of average-cross entropy  by model and news type; Top Right: density 
 distributions of average cross-entropy values for true and fake news stories as calculated by the fine-tuned 
 model; Bottom: summary statistics for cross-entropy across model and news type 

 Veracity  N  Negative  Neutral  Positive  Mean  StDev 
 True  6405  1813  4394  198  -0.257  0.313 
 False  6405  4354  1784  267  -0.453  0.356 

 Fig 4  : Top Left: counts of categorical sentiment label  by news story type; Top Right: density distributions 
 of continuous sentiment scores (calculated by summing the ‘number’ of each label (-1, 0, or 1) multiplied 
 by the confidence of the sentiment model for that label); Bottom: exact counts and summary statistics for 
 sentiment scores by news type 
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 Fig 5  : Left: joint distribution of continuous sentiment  score and average cross-entropy by news type (the 
 filled region represents fake news stories, while the empty region represents true news stories), the numbers 
 around the rings represent the value of the probability density function for data in that region; Right: a 
 three-dimensional view of the same plot, with the ring-numbers now represented by height along the z-axis 

 I tested for differences in sentiment score between the two news types in two ways (see 

 Figure 4, previous page). First, I compared the counts of categorical sentiment labels by news 

 type and found a significant difference in that regard (two-way 𝜒  2  -test, 𝜒  2  = 2159, p < 0.0001). 

 Second, I compared the distribution of  continuous  sentiment score (calculated by summing the 

 ‘number’ of each label (-1, 0, or 1) multiplied by the confidence of the sentiment model for that 

 label) by news type, and again found a significant difference (two-way independent t-test; t = 

 33.02; p < 0.0001). This test revealed that the sentiment of true news stories is more positive on 

 average than fake news stories, while both skew towards the negative. This result again aligns 

 with the initial hypothesis. 

 Given that these two metrics vary significantly according to news veracity, what may 

 their joint distribution look like? Plotting the density of stories by category with continuous 
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 sentiment score on the x-axis and average cross-entropy on the y-axis yields the left-most plot in 

 Figure 5 (previous page). The fake news stories show a distinct cluster from the true news 

 stories, with the fake cluster being higher-entropy and lower-sentiment than the true cluster. Both 

 distributions are unimodal with approximately orthogonal axes. The values of these joint density 

 distributions served as the likelihood factors in the Baeysian classifications. 

 B.  Classification 

 Do these distinct clusters facilitate predicting which category an unseen news story may 

 fall in based solely on its average cross-entropy and continuous sentiment score? I tested three 

 different classification methods to answer this question: one based solely on sentiment (Figure 4 

 Top Right), one based solely on cross-entropy (Figure 3 Top Right), and one using the joint 

 distribution of sentiment and cross-entropy (Figure 5 Left). All cross-validations of all three 

 methods exceed 66% accuracy (chance levels), with  average accuracies of 69.8%, 76.8%, and 

 79.4%, respectively (see Tables 1-3, next two pages). 

 To evaluate the statistical robustness of these results, I performed permutation tests across 

 all three joint-distribution cross-validations by randomly shuffling the labels and recalculating 

 the distributions 1,000 times. I then tested each cross-validation’s fine-tuned model using the 

 respective set of new distributions. I then calculated the p-values as the fraction of these 1,000 

 shuffled-distribution testing runs that exceeded the accuracy of the initial un-shuffled testing. All 

 of these p-values were less than 0.001, providing further evidence that true and fake news differ 

 in their joint distributions of cross-entropy and sentiment and that these differences facilitate 

 accurate class prediction. 
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 Average  CV1  CV2  CV3 

 Accuracy  0.698  0.697  0.698  0.698 

 True Positive Rate  0.867  0.850  0.866  0.885 

 True Negative Rate  0.334  0.374  0.333  0.296 

 False Positive Rate  0.666  0.626  0.667  0.704 

 False Negative Rate  0.133  0.150  0.134  0.115 

 CV1  CV2  CV3 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Actual Fake  7750  1372  7952  1226  8098  1057 

 Actual True  2693  1610  2832  1415  3004  1266 

 Table 1:  Results from sentiment-only classification  across all three cross-validations of the dataset; Top: accuracy 
 and error measures; Bottom: confusion matrices 

 Average  CV1  CV2  CV3 

 Accuracy  0.768  0.752  0.772  0.781 

 True Positive Rate  0.910  0.926  0.910  0.894 

 True Negative Rate  0.465  0.383  0.474  0.539 

 False Positive Rate  0.535  0.617  0.526  0.461 

 False Negative Rate  0.090  0.074  0.090  0.106 

 CV1  CV2  CV3 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Actual Fake  8445  667  8350  828  8180  975 

 Actual True  2657  1646  2236  2011  1967  2303 

 Table 2:  Results from cross-entropy-only classification  across all three cross-validations of the dataset; Top: 
 accuracy and error measures; Bottom: confusion matrices 
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 Average  CV1  CV2  CV3 

 Accuracy  0.794  0.782  0.795  0.805 

 True Positive Rate  0.893  0.895  0.892  0.891 

 True Negative Rate  0.583  0.542  0.587  0.619 

 False Positive Rate  0.417  0.458  0.413  0.381 

 False Negative Rate  0.107  0.105  0.108  0.109 

 CV1  CV2  CV3 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Predicted 
 Fake 

 Predicted 
 True 

 Actual Fake  8163  959  8183  995  8160  995 

 Actual True  1970  2333  1756  2491  1626  2644 

 Table 3:  Results from joint classification across  all three cross-validations of the dataset; Top: accuracy and error 
 measures; Bottom: confusion matrices 

 C.  Exploratory Testing and Results 

 The above results indicate that there is a significant difference in average cross-entropy 

 and sentiment score between true and fake news stories in the ISOT Fake News Dataset, but to 

 what extent does this result generalize to other datasets or news types? 

 To attempt to answer this question, I tested the method outlined above on the LIAR 

 dataset (Wang, 2017). Like the ISOT Fake News dataset, the LIAR dataset contains examples 

 composed of sentences from both true and fake news stories, with the labels again drawn from 

 Politifact’s human rating of the source. However, instead of a binary distinction between true and 

 fake news, the LIAR dataset is broken down into six categories ranging from totally false to 

 totally true; additionally, the examples are considerably shorter in the LIAR dataset compared to 

 the ISOT. 
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 Fig 6  : Left: distributions of average cross-entropy  by news story veracity category in the LIAR dataset; 
 Right: distributions of continuous sentiment score by veracity category 

 These differences limited the extent to which I could test the  classification  aspect of the 

 original procedure, but I could still test for relationships between news story veracity on the one 

 hand and cross-entropy or sentiment on the other. If the results above are indeed generalizable, 

 then one would expect a negative relationship between higher veracity categories and average 

 cross-entropy (as more-truthful stories will be less surprising), and a positive relationship 

 between category and sentiment score (as more-truthful stories will be more neutral). 

 These hypotheses proved somewhat correct across the LIAR dataset. There was a slight 

 negative correlation between increasing veracity category and average cross-entropy in a model 

 fine-tuned on news stories of categories 0 and 1 (Spearman’s rank correlation, ⍴ = -0.092, p < 

 0.0001) and a slight positive correlation between category and continuous sentiment score 

 (Spearman’s rank correlation, ⍴ = 0.061, p < 0.0001) (see figure 6, above). However, given how 

 small these correlations are across this dataset (as opposed to the more discernible differences in 

 the main dataset), it remains unclear  the extent to  which  misinformation-containing news stories 

 differ from their more truthful counterparts in terms of average cross-entropy and sentiment in 

 general. This could be one fruitful direction for extensions of the current investigation. 
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 V.  Discussion 

 The above results support the initial hypotheses that 1) generative language models have 

 a significantly higher next-word-prediction error while parsing misinformation-containing news 

 stories compared to more truthful stories and 2) misinformation-containing stories have a 

 generally more negative sentiment than truthful stories, which tend to be more neutral in 

 sentiment. Furthermore, these differences facilitate the classification of held-out news stories 

 from the ISOT Fake News Dataset with a Bayesian classifier based on this prediction error 

 (average cross-entropy) and sentiment score, and this classifier correctly identifies the label of 

 these unseen stories with an accuracy of 79.4%, significantly above chance levels. 

 With these results in-hand, we can now revisit the theoretical concerns mentioned at the 

 outset of this investigation. First, however, I must carve a distinction between two concepts I 

 have thus far conflated: the truth of a statement and the way in which that statement is 

 communicated. The results of this investigation do  not  imply that a statement’s material 

 correspondence with a state of the world can be accurately understood in terms of its average 

 cross-entropy or sentiment; rather, we can conclude that when writing about things that are 

 widely considered to be false, people tend to write in a way that can be characterized as more 

 surprising and more negatively-valenced. Consider the breaking news of Queen Elizabeth’s 

 death: those stories would be written in such a way as to express surprise and negative sentiment, 

 but the event itself did indeed happen in the world. However, if one finds their Twitter or 

 Facebook feeds flooded with news stories of expiring monarchs, that may be a reason to think 

 twice about at least some of those stories. 

 One conclusion we can draw from these results is a confirmation of earlier findings: the 

 findings outlined above confirm the results that misinformation-containing news stories are both 



 Hutchinson  Classifying Online Misinformation  28 

 more surprising and negatively-valenced than their truthful counterparts. This result takes on a 

 cognitive dimension if we consider the complementary findings that humans and LLMs are 

 generally aligned in their ‘surprise’ at a given word in-context. This investigation mutually 

 confirms the findings of both strands of research while adding a new dimension: that one reason 

 humans may rate misinformation as more surprising is the unpredictability of the words used in 

 those news stories. 

 What could be underlying this linguistic unpredictability of misinformation? For LLMs, 

 the answer is straightforward: they are trained on an enormous volume of text from the internet, 

 most of which is generally aligned with the true state of the world (Wikipedia, for example). 

 Thus, the kinds of words LLMs predict in a sequence reflect this training data’s composition of 

 generally true statements. Recall the distinction above, which may now appear somewhat more 

 clear: LLM surprise does not reflect a conflict with the truth, but rather a conflict with the way 

 true statements are generally written. This is confirmed by the greater difference in average 

 cross-entropy in the fine-tuned model, as that model has re-weighted its parameters to reflect not 

 only the kinds of things generally written on the internet, but more specifically the way  true news 

 stories  are written. The elevated surprise in  fake  news stories follows naturally from this 

 fine-tuning. Another possibility regarding LLM surprise could be that the fake news stories have 

 a higher prevalence of syntactically malformed sentences, which would raise prediction-error 

 rates. However, as these stories are meant for human consumption and appear generally 

 well-formed in the dataset, I am making the assumption here that these syntactic errors play a 

 relatively small part in the average cross-entropy calculations compared to the semantic 

 violations discussed above. 

 The answer for what makes misinformation more surprising to humans is less 

 straightforward. One possibility is that of a typical notion of evaluating the truth of a statement: 
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 we consult our representation of the believed state of the world after reading or hearing a 

 statement and then assess whether that statement and our representation are logically compatible. 

 If they are, then we do not have to adjust this representation very much, and little surprise is 

 registered (as is the case with most everyday statements). However, if there is a mis-match 

 between the statement and our representation, then this registers to us as surprising (again, 

 because most everyday statements do not cause such conflict). While some people certainly hold 

 skewed or biased representations of the world that  do  align with the kinds of statements 

 presented in misinformation-containing news stories, these viewpoints are generally not held by 

 the majority. Thus, group-level results show an elevated surprise reaction to fake news stories. 

 Another possible interpretation of human surprise is closer to that of the LLM 

 explanation. The results of human alignment with LLM surprise can be taken as indicating some 

 similarity in the computational processes of LLM prediction and human language cognition; 

 specifically that next-word prediction plays a large-enough role in human language cognition as 

 to allow LLM hidden-state activation to reliably predict human fMRI activation when reading 

 the same pieces of text (Schrimpf et al., 2021). Additionally, Goldstein et al. (2022)’s finding that 

 GPT-2 cross-entropy correlates with the human N400 event-related potential response provides 

 further evidence of a brain-LLM similarity. If we take these results as indeed indicating some 

 computational similarity in next-word prediction, then humans may find misinformation 

 surprising for largely the same reason LLMs register higher prediction errors: we are not used to 

 seeing certain words combined in the ways they often are in fake news stories. 

 Note that these two interpretations need not be incompatible; the answer likely lies in 

 some combination of the two. We could find misinformation surprising because we do not expect 

 certain words in certain contexts, and we could fail to predict those words in those contexts 
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 Cross-Entropy  Tokenized Context 

 20.360  [' t', ' vote',  ' LOL'  , '!', 'WE'] 

 16.361  [' otherwise', ' has',  ' genital'  , 'ia', ' of'] 

 22.042  [' The', ' Donald',  ' listening'  , ' to', ' the'] 

 18.964  [' State', ' Department',  ' misplaced'  , ' and', '  lost'] 

 18.967  [' the', ' Russian',  ' prostitute'  , ' story', ','] 

 20.413  ['Did', ' Hillary',  ' die'  , ' after', ' leaving'] 

 Table 4:  A sample of context windows in misinformation-containing  stories that contain the maximum 
 cross-entropy word-prediction (bolded) in that story and the cross-entropy of that prediction; these indicate that 
 elevated cross-entropy or surprise could arise from a stylistic conflict with how true news stories are written (first 
 three rows) or a semantic conflict (last three rows) 

 because the statements are in conflict with our internal representation of the state of the world. 

 LLMs, however, lack an internal representation of the state of the world, so their prediction 

 errors are again a byproduct of their (exclusively linguistic) training data. I make this distinction 

 here so as to not advocate for the view that humans and LLMs come to expect in-context words 

 for the same reasons—or, even more extreme, that they learn language-use through the same 

 mechanisms—which is a much more controversial claim than the one I am endeavoring to 

 defend in this investigation. 

 Another conclusion we can draw from these results is of a more practical, 

 computer-scientific nature: misinformation may indeed be classifiable through interpretable and 

 computable natural-language metrics. This indicates a path forward for automated 

 content-moderation on platforms such as Facebook and Twitter, which are sorely in need of such 

 algorithmic moderation. However, the more modest results of the exploratory investigation with 

 the LIAR dataset indicates that this problem may not be as simple as the results of the original 

 investigation suggests. The LIAR data varies from the ISOT data in several ways, such as the 
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 ordinal labeling of veracity and the length of the stories: 18 words versus 405 words, 

 respectively. This may indicate that using cross-entropy and sentiment as guidelines for 

 classification could require sufficiently-many words to reliably separate true and fake news 

 stories, which would be a problem for the aforementioned platforms who deal mostly in 

 bite-sized phrases. One workaround to this issue could be investigating the articles that are often 

 linked in these posts, which would hopefully contain enough text for the classification algorithm 

 to flag. Again, strategies for improved content moderation is a fruitful area for ongoing and 

 future research. 

 Another possible impediment to implementing the classification strategy outlined by this 

 investigation could be that misinformation-peddlers may find ways around this simple 

 two-parameter classification system. This issue points to a question I raised at the outset: what 

 makes misinformation go viral at such alarming rates? Could it be that the surprising nature and 

 negative-valence of their content makes them inherently more attention-grabbing? This would 

 seem to be the direct conclusion of studies like Brady et al. (2020), as well as the indirect 

 conclusion of Smith & Levy (2013), which suggests that word surprisal correlates with gaze 

 duration and therefore processing load. If this is indeed the case, then it may prove difficult for 

 misinformation-writers to find a workaround to this classification system without sacrificing the 

 very qualities that make misinformation effective. This does not rule out, however, some 

 potential for an analogy to computer vision’s problem of adversarial attacks (alterations to an 

 image that are inconsequential to a human but lead a classification algorithm astray) in this 

 domain, where writers may find combinations of words that, while still false, do not register as 

 significantly unpredictable to an LLM (Szegedy et al., 2013). 
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 VI.  Limitations 

 This investigation is not free from either theoretical  or practical limitations, however. The 

 ISOT Fake News Dataset contains only one source for true news stories: Reuters. This clearly 

 introduces bias into the classification model, as the fine-tuned GPT-2 has re-weighted its 

 parameters not to reflect true news  precisely  , but  instead the writing style of Reuters. This could 

 lead to true news stories from other reputable outlets being classified as likely containing 

 misinformation, but I would expect this risk to be rather small due to the general similarities in 

 professional news-reporting style. Regardless, this bias could be partially at play in the more 

 moderate exploratory results, as the more-truthful stories in the LIAR dataset do not reflect a 

 stylistic bias that could facilitate classification. Due to this limitation, a less-charitable 

 interpretation of the results above may be that this classification model has merely learned to 

 separate Reuters stories from those of obvious stylistic difference (see Table 4, page 30 for 

 examples of these stylistic variances). 

 Additionally, while these metrics are indeed computationally tractable, calculating 

 cross-entropy in particular is quite computationally  expensive  . Running a GPT-2 model—which 

 uses 1.5 billion parameters in each prediction—through thousands of lengthy news stories is not 

 feasible on a CPU. Accordingly, this experiment required hundreds of hours of compute time on 

 a university computing cluster’s GPUs. This hardware limitation could pose a problem for 

 large-scale implementations of these classification metrics. 
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 VII.  Conclusion 

 Misinformation is a scourge of our information age:  false but convincing information 

 floods the internet, and social media platforms have largely failed to stem this rising tide. What is 

 to be done about this problem? What makes misinformation so attractive to internet users and 

 correspondingly profitable for internet platforms? One potential path to answering both of these 

 questions is to ask which cognitively-plausible, computationally-tractable natural-language 

 metrics could clearly separate misinformation-containing stories from truthful ones. This 

 investigation explored the potential of surprise (as measured by average cross-entropy calculated 

 from a GPT-2 language model) and negative sentiment to serve as two of these metrics. I found 

 that, in a dataset of over 40,000 news stories, true and fake stories were indeed classifiable 

 according to these metrics with an accuracy of 79.4%. Despite limitations to the dataset and 

 computational resources needed to carry out this classification, these results connect and further 

 two strands of research: one on the cognitive features of misinformation, and the other on the 

 similarities between language processing in large transformer language models and human 

 brains. Both of these lines of work will be ever-more necessary as we become increasingly tied 

 to the online world and language models become increasingly prevalent in our everyday lives. 
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 Appendix 

 Fig A1  : Same family of plots as described in  Results  ;  this data represents the distributions calculated from 
 the second of three cross-validation folds. 
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 Fig A2  : Same family of plots as described in  Results  ;  this data represents the distributions calculated from 
 the third of three cross-validation folds. 


