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Significance

 The Beholder’s Share in art 
history posits that a work of art is 
completed by the viewer, who 
infuses it with personal meaning. 
Here, we present an empirical 
examination of a key assumption 
of the Beholder’s Share: that 
abstract art elicits more 
subjective interpretation than 
representational art due to its 
inherent ambiguity. To 
investigate this, we quantified 
interindividual differences in 
brain activity in response to 
abstract or representational 
paintings. Our findings revealed 
more person-specific responses 
to abstract paintings, indicating 
that individuals contribute more 
personal associations to abstract 
art than to representational art. 
These unique patterns were 
observed in brain regions 
associated with internally-
oriented cognition rather than 
areas involved in visual 
perception, providing empirical 
evidence supporting the 
Beholder’s Share.
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Our experience of the world is inherently subjective, shaped by individual history, 
knowledge, and perspective. Art offers a framework within which this subjectivity is 
practiced and promoted, inviting viewers to engage in interpretation. According to art 
theory, different forms of art—ranging from the representational to the abstract—chal-
lenge these interpretive processes in different ways. Yet, much remains unknown about 
how art is subjectively interpreted. In this study, we sought to elucidate the neural and 
cognitive mechanisms that underlie the subjective interpretation of art. Using brain 
imaging and written descriptions, we quantified individual variability in responses to 
paintings by the same artists, contrasting figurative and abstract paintings. Our findings 
revealed that abstract art elicited greater interindividual variability in activity within 
higher-order, associative brain areas, particularly those comprising the default-mode 
network. By contrast, no such differences were found in early visual areas, suggesting 
that subjective variability arises from higher cognitive processes rather than differences 
in sensory processing. These findings provide insight into how the brain engages with 
and perceives different forms of art and imbues it with subjective interpretation.

individual differences | aesthetics | Beholder’s Share

 Our experience of the world is subjective, shaped by the constant process of interpretation. 
Art plays a unique role in revealing this subjectivity, not only by expressing the artist’s 
distinct vision but also by inviting the viewer to actively engage in the construction of 
meaning. Unlike other forms of visual processing, which often adhere to normative inter-
pretations, the experience of viewing art demands that the observer take on a creative, 
interpretive role ( 1 ,  2 ). This dynamic interaction between the artwork and the viewer has 
been described by art theorists as the Beholder’s Share.

 The concept of the Beholder’s Share provides a framework for understanding subjective 
experience through the lens of art. In this view, the viewer is not simply a passive recipient 
of visual sensations but an active participant who brings their unique perceptual, concep-
tual, and emotional experience to the work of art ( 1     – 4 ). Different forms of art engage 
these prior experiences in different ways. Figurative (representational) art, with its ground-
ing in recognizable forms and shared representations, provides a common framework for 
viewers. In contrast, abstract (nonrepresentational) art, which avoids familiar depictions 
of objects and scenes, invites the observer to project personal memories, associations, and 
meanings, amplifying the role of individual interpretation.

 Despite the intuitive appeal of this theory, only very few studies have evaluated it 
empirically. In prior behavioral research, we found that abstract art appears to shift viewers 
toward a more internally-oriented mindset, consistent with the theoretical predictions of 
the Beholder’s Share ( 5 ). In this study, we seek to extend this understanding by examining 
the neural underpinnings of this phenomenon. Specifically, we seek to identify patterns 
of brain activity corresponding to the Beholder’s Share and to understand how they vary 
across individuals, reflecting the diversity of experience elicited by different forms of art.

 Research in neuroaesthetics has revealed much about how art is processed visually and 
how art evokes preferences and attribution of value ( 6   – 8 ). However, most studies so far 
have focused on shared responses to different categories of stimuli, averaged across par-
ticipants and over paintings ( 9   – 11 ). Therefore, there has been a lack of empirical data 
addressing the question of how, and whether, abstract art elicits more variable neural 
responses and whether such variability in the brain relates to viewers’ subjective experience. 
The Beholder’s Share suggests that we bring our own associations and memories to an 
abstract painting; if so, our responses should be subject-unique and should lead to indi-
vidual variability across participants in neural responses to the same painting. Multivariate 
data analysis techniques that look at shared and idiosyncratic response patterns across 
participants ( 12         – 17 ) offer an analytical approach towards an empirical test of the Beholder’s D
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Share. Here, we exploit this approach to provide an empirical test 
of how participants vary in their responses to art, directly address-
ing the notion of variability in subjective experience, which is at 
the very core of the Beholder’s Share.

 This study addresses two main questions about the Beholder’s 
Share: 1) Does abstract art evoke more subjective interpretations, 
and 2) Where in the hierarchy of sensory to mnemonic processes 
does this occur in the brain? To address the first question, we 
collected written captions that participants produced in response 
to viewing abstract and figurative paintings by the same artist. 
Figurative paintings depicted a recognizable object, person, or 
scene; abstract paintings depicted no recognizable objects. We 
then quantified the cross-subject variation in semantic meaning.

 To address the second question, we presented a different sample 
of healthy human participants with the same abstract and figura-
tive paintings while they were scanned with fMRI. We then quan-
tified patterns of Blood-Oxygen-Level Dependent (BOLD) 
response that varied across participants in response to the same 
painting, thus mirroring the processes of subjective interpretation 
that are theorized by the Beholder’s Share. Based on previous work 
( 5 ), we predicted that abstract art, compared to figurative art, 
would evoke more internally-oriented thoughts and therefore 
would be associated with activation in brain areas known to be 
involved in internally-oriented processing, such as the Default 
Mode Network (DMN). The DMN has been implicated in 
self-referential processes, such as autobiographical memory ( 18 , 
 19 ) and narrative interpretation ( 15 ,  17 ,  20 ), as well as in aesthetic 
experiences, where DMN activity has been associated with the 
subjective experience of being “moved” by art ( 21 ,  22 ). However, 
the role of the DMN in the Beholder’s Share, and in response to 
abstract versus figurative art, has not been examined. 

Results

Individual Variability in Semantic Interpretations of Abstract 
Paintings. We first tested whether people respond more variably 
to an abstract painting than to a figurative painting when asked to 

freely generate a written description of the painting. We collected 
captions of each painting (164 in total) from an online sample 
of 30 participants (Fig.  1B). For each painting, we calculated 
the cross-subject dissimilarity in semantic meaning of captions 
(SI Appendix, Fig. S3). We then regressed this dissimilarity measure 
onto the level of abstraction of the painting, obtained by an 
independent sample of participants (SI Appendix). We found that 
semantic dissimilarity of captions varies with level of abstraction 
of the painting (Fig. 3B). This suggests that abstract art elicits 
differences in verbalizable interpretation across participants.

Dissimilarity in Patterns of BOLD Response: Neural Evidence 
of the Beholder’s Share. We presented 29 healthy human 
participants with abstract and figurative paintings while they were 
scanned with fMRI and asked them to make subjective decisions 
about each painting (Fig. 1B), using a previously developed task 
taken from (5) (SI Appendix). We reasoned that abstract art would 
elicit more individual contribution and that this would manifest 
in greater cross-subject dissimilarity in BOLD responses.

 To measure whether abstract art elicits more dissimilarity in 
brain activity, we obtained a “whole brain dissimilarity measure.” 
We divided each participant’s brain into anatomical parcels (using 
the Harvard-Oxford Atlas) and extracted the BOLD time series 
for all regions. For each painting, we computed the dissimilarity 
in regional activations across participants. We found that 
whole-brain patterns of responses differed across participants sig-
nificantly more for abstract paintings than for figurative paintings 
(t(162) = 5.34, P  < 0.001) ( Fig. 3A  ). To test the sensitivity of these 
differences to the level of abstraction, we determined average 
abstraction ratings for each painting and tested whether these 
subjective measures of abstraction correlated with the dissimilarity 
values in BOLD activity. We found that indeed the paintings with 
higher perceived levels of abstraction were associated with greater 
dissimilarity (r = 0.32, P  < 0.001) ( Fig. 3A  ). These results indicate 
that abstract art yields more variable responses than figurative art, 
substantiating a basic assumption of the Beholder’s Share.  

A B

Fig. 1.   The Beholder’s Share and Task Design. (A) The Beholder’s Share as Variability in Responses across Subjects. To quantify the Beholder’s Share, we measured 
dissimilarity in brain responses across subjects to each individual painting. We predicted that abstract paintings would elicit individual interpretations, which would 
manifest in higher cross-subject dissimilarity in brain responses and written descriptions. (B) Tasks. Captions study (Top): In a behavioral study, an independent 
group of participants was asked to describe paintings in 280 characters or less. fMRI study (Bottom): In an fMRI scanner, subjects viewed abstract and figurative 
paintings one at a time and were asked to sort each into a gallery opening in the next few days or a gallery opening in the next few years.D
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The Beholder’s Share Emerges in Higher Level Cognitive Areas. 
Following the whole-brain analyses, we additionally sought to 
determine where in the brain does this variability arise? More 
specifically, do these dissimilar neural representations arise in regions 
responsible for early processing of incoming visual stimuli or in 
regions responsible for more internally-driven cognitive processes? 
While figurative art guides one through the scene, abstract art allows 
for more freedom to look around the painting. This could lead to 
differences in incoming visual information. If this were the case, 
we would expect abstract art to generate increased variability in 
patterns of BOLD response in early visual regions. Alternatively, 
abstract paintings may allow people to draw on unique internal 
representations, rather than differences in visual processing related 
to different incoming visual information. If so, we should see 
variability in brain regions responsible for more internally-driven 
cognitive processes. One strong candidate for a network of structures 
is the DMN, which is implicated in tasks that require drawing on 
internally-constructed information such as autobiographical memory 
(23), abstract thought (24, 25), and narrative interpretation (17, 20).

 We computed voxel-wise cross-subject dissimilarity in individ-
ual regions-of-interest ( Fig. 2 ) consisting of core nodes of the 
DMN, specifically the precuneus (PC) and the FMC, as well as 
regions involved in early visual processing–the occipital pole, the 
intracalcarine cortex (ICC), and the supracalcarine cortex (SCC). 
We found that cross-subject patterns of BOLD responses were 
more dissimilar across participants for abstract than figurative art 
in regions overlapping with the DMN ( Fig. 3B  ), suggesting that 
participants are drawing on unique internal representations when 
experiencing abstract art. We did not find differences in variability 
between abstract art and figurative paintings in early visual 
regions, suggesting that the intake of low-level visual information 
is similar across participants ( Fig. 3B  ). Together, the findings 
that cross-subject patterns of BOLD responses are more dissimilar 
across-participants for abstract than figurative art in regions of the 
DMN, but not in early visual regions, suggests that abstract art 
may evoke similar visual sensations across participants, but differ-
ent interpretations.                  

Control Analyses. We then conducted a number of control analyses 
to explore the boundaries of these effects and their selectivity.
Controlling for differences in activation. Cross-subject dissimilarity 
could be caused by measurement noise, which could play a larger 
role for stimuli that evoke smaller responses in a brain region. To 
control for differences in activation across paintings, we modeled 
each region with a linear regression that predicted the dissimilarity 
of each painting from the painting’s abstraction value, controlling 

for each painting’s average BOLD response in the region. We 
found that even when controlling for activation in the region, 
the PC (b = 0.015, sd = 0.004, P < 0.001) and FMC (b = 0.005, 
sd = 0.002, P < 0.01) show higher cross-subject dissimilarity for 
more abstract paintings, while early visual regions did not show 
differences in cross-subject dissimilarity between abstract and 
figurative art. We also found a significant interaction between 
the occipital pole and PC and not between the occipital pole and 
the FMC (SI Appendix, Table S1). A comprehensive analysis of the 
relationship between activation and dissimilarity in each region is 
shown in SI Appendix, Fig. S5.
Controlling for differences in visual statistics of paintings. To 
rule out that these differences in neural dissimilarity are due 
to differences in low-level visual features between abstract and 
figurative art, we computed the means and SD for a set of visual 
statistics of the paintings (entropy, brightness, saturation, SD of 
hue, SD of brightness, and SD of saturation). We found that 
these low-level visual statistics do not significantly differ between 
abstract and figurative art (SI Appendix, Fig. S1) and none of these 
features predict dissimilarity (SI Appendix, Fig. S4).
Validation of dissimilarity measure with behavior. We sought to 
determine whether variation in neural activity could be explained 
by individual differences in liking of abstract paintings. To address 
this question, we compared cross-subject dissimilarity in liking 
ratings for each painting with differences in neural activation. 
Specifically, we constructed subject-by-subject RDMs based on 
the absolute distance between participants’ liking ratings. These 
liking RDMs were then correlated with subject-by-subject RDMs 
derived from patterns of BOLD activity in the brain regions we 
had previously tested.

   Our analysis revealed significant correlations between liking 
distance and dissimilarity in neural activation in the FMC [over-
lapping with ventral medial prefrontal cortex (vmPFC)] and the 
anterior temporal lobe. The vmPFC is well known for its role in 
subjective value representation and has recently been implicated 
in the subjective valuation of art ( 7 ). The finding that individual 
variability in liking is reflected in patterns of BOLD activity in 
the vmPFC suggests that this measure captures a meaningful com-
ponent of the subjective experience of art, rather than random 
noise. Notably, the lack of similar correlations in other regions 
indicates that participants’ neural responses to art reflect dimen-
sions of experience beyond simple liking (SI Appendix, Fig. S7 ). 
These results underscore the complexity of art appreciation, high-
lighting that while subjective valuation is a significant factor, it 
represents just one facet of the broader, multidimensional experi-
ence elicited by abstract art.    

Fig. 2.   Computing Cross-subject Dissimilarity per Painting. We measured cross-subject dissimilarity in responses to each painting individually. To do this, we 
extracted feature vectors from each subject’s responses (whether semantic features or patterns of BOLD activation). We then computed the dissimilarity between 
each subject’s pattern of activity for each painting, resulting in a subject x subject Representational Dissimilarity Matrix (RDM) for each painting. We then take 
the median of this matrix as our cross-subject dissimilarity measure for each painting. Finally, we correlate each painting’s dissimilarity value with its abstraction 
rating (obtained from an independent set of subjects).D
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Discussion

﻿Understanding how the human brain constructs subjective experi-
ences provides a profound insight into the intersection of neurosci-
ence, psychology, and the humanities. Art, in particular, offers a 
unique lens through which to examine this interplay. A pivotal con-
cept in this realm is the Beholder’s Share, which captures the active 

role of the viewer in interpreting and ascribing meaning to art ( 1     – 4 ). 
Rooted in the viewer’s own history, knowledge, and expectations, 
this phenomenon becomes especially pronounced when encounter-
ing abstract art, where the absence of clear representational content 
invites greater projection and personal interpretation.

 In our study, we sought to empirically test a central tenet of the 
Beholder’s Share: that an individual’s experience of a work of art 

Fig. 3.   Neural Dissimilarity in Responses to Abstract and Figurative Art. (A) Cross-subject Dissimilarity in Whole Brain BOLD response. We computed cross-
subject correlations on the pattern of average activation of all regions in the Harvard Oxford atlas. For each painting, we computed a subject x subject correlation 
matrix and extracted the median correlation from that matrix. (Left) The cross-subject dissimilarity value for each of 164 paintings, grouped by art type. Abstract 
paintings elicit more cross-subject variability in brain activation than to figurative paintings. (Right) The same cross-subject dissimilarity value, plotted according 
to each painting’s average abstraction rating. We find a significant correlation between abstraction of a painting and dissimilarity in BOLD response. (B). Semantic 
Dissimilarity. Cross-subject dissimilarity for semantic content of captions for each painting. Semantic Dissimilarity was calculated as the median cosine distance 
between all caption embeddings for each painting. Each data point represents a painting. Dissimilarity increases with the abstraction level of the painting. (C). 
Regional Bold Dissimilarity. Cross-subject dissimilarity for abstract and figurative paintings from selected visual regions and regions of the DMN. Opole=Occipital 
pole; iLOC=inferior Lateral Occipital Cortex; OFG=Occipital Fusiform Gyrus; ICC=Intracalcarine Cortex; SCC=Supracalcarine Cortex; PC=Precuneus; FMC=Frontal 
Medial Cortex. We find that abstract paintings elicit higher cross-dissimilarity in DMN regions than figurative art, but not in early visual regions. (D). Model 
Predicting Dissimilarity of a Painting from its Abstraction Level. Coefficients from a linear regression model regressing abstraction level of each painting onto 
its dissimilarity value, controlling for magnitude of activation. Higher values indicate higher dissimilarity for more abstract paintings. P-values were obtained 
from comparing a model including abstraction rating as a predictor to a null model (model excluding abstraction rating). * indicates regions with significant (q < 
0.05) relationship between abstraction and cross-subject dissimilarity, corrected for multiple comparisons using FDR correction. Abstract paintings elicit more 
cross-subject dissimilarity than figurative paintings in the DMN and not in the early visual cortex. (E) Correlation Between Abstraction Rating and Dissimilarity. 
Visualization of computed semipartial correlations between abstraction rating and BOLD pattern dissimilarity in the Occipital Pole, Precuneus, and FMC. The 
x-axis represents the average abstraction rating of a painting, from which the average BOLD response has been partialed out.
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is shaped by their own personal context and prior experience, 
especially when viewing abstract (nonrepresentational) art com-
pared to figurative (representational) art. We tested this idea by 
comparing variability in responses to abstract and figurative paint-
ings by the same artist and found that participants exhibited 
greater variability in their reactions to abstract art. This variability 
manifested both in verbal descriptions and in brain activity. 
Interestingly, cross-participant differences in brain activation were 
observed in the DMN, rather than in primary visual areas, sug-
gesting that the individualized nature of abstract art experiences 
arises from higher-order cognitive processes rather than differences 
in early visual processing.

 The DMN has long been associated with self-referential and 
internally-generated processes, including narrative interpretation  
( 15 ,  20 ) and sense-making ( 26 ) as well as autobiographical mem-
ory, prospection, creativity, and imagination ( 24 ,  25 ,  27 ). Our 
findings align with these roles, suggesting that the DMN supports 
the interpretative and sense-making processes central to engaging 
with abstract art. These observations also build on prior research 
showing that the DMN is active during aesthetic experiences and 
can reflect shared or divergent interpretations across participants, 
depending on their personal experiences and construction of 
meaning ( 13 ,  20 ,  21 ).

 The variability observed in our study invites several intriguing 
questions about the cognitive and emotional underpinnings of 
the Beholder’s Share. For instance, do differences in interpretive 
responses reflect variability in individuals’ capacity to generate 
representational content from ambiguous stimuli? Might they 
instead stem from differences in emotional resonance or aesthetic 
taste? Future research should aim to disentangle these factors sys-
tematically, potentially illuminating broader principles of how the 
brain constructs meaning from ambiguity.

 The Beholder’s Share can be conceptualized as the influence 
of priors on interpretation of an image. In this study, we did not 
attempt to manipulate those priors and, instead, participants 
were left to engage in the process of interpretation on their own. 
Prior research, however, demonstrates that exposure to specific 
perceptual, semantic, or emotional stimuli can bias the interpre-
tation of ambiguous images ( 28 ,  29 ). Future work could build 
on this foundation, systematically exploring how priming shapes 
responses to abstract art, constraining interpretation through tar-
geted exposure.

 In addition, while there may be many reasons why people have 
different priors that they bring to bear when interpreting abstract 
art, previous work suggests that one’s personality (e.g., openness 
to experience), former experience with art, and emotional/affective 
biases may be especially important factors ( 30   – 32 ). These factors 
have been shown to affect different emotional responses to art 
( 33     – 36 ) and future work could consider these factors as sources 
of variability in response.

 Another dimension of variability lies in the processes individ-
uals engage in when interpreting abstract art. While some people 
may resolve ambiguity relatively easily, others may require more 
time, reflecting differences in the cognitive mechanisms of inter-
pretation. Ambiguity resolution often involves evidence accumu-
lation—a process well documented in decision-making tasks 
involving both simple perceptual inputs and complex value-based 
judgments ( 37   – 39 ). More ambiguous input requires more evi-
dence for its resolution and therefore takes more time ( 40 ). One 
possibility therefore is that the process of evidence accumulation 
may vary across people. Testing these dynamics in the context of 
art perception could yield insights into how humans navigate and 
resolve ambiguity in complex, subjective domains. 

Implications for Both Fields of Art and Neuroscience. Our 
interdisciplinary study bridges neuroscience and art, leveraging 
abstract and figurative paintings to probe the subjective nature 
of human experience. By applying multivariate neuroimaging 
analyses, we uncover differences in individual responses to art, 
advancing the burgeoning field of neuroaesthetics. Our findings 
provide empirical support for a concept that has shaped art theory 
for over a century—the Beholder’s Share. Importantly, this work 
positions art as a potent tool for understanding the mind, offering 
a naturalistic means of eliciting and studying subjective experience.

 Neuroscientists are increasingly recognizing the value of 
 investigating individual differences in perception and cognition 
( 14 ,  41   – 43 ). Art, with its multidimensional and inherently personal 
nature, serves as a uniquely effective stimulus for exploring these 
differences. Understanding variability may be particularly relevant 
for studying populations characterized by heightened cross-subject 
differences, such as clinical groups and adolescents ( 44 )—popula-
tions often deemed “noisier.” Art’s capacity to evoke individualized 
responses may provide a valuable framework for investigating het-
erogeneity in these populations, adding to existing efforts ( 45   – 47 ) 
and refining predictive models for treatment outcomes.

 In a broader sense, the study of art allows us to interrogate the 
subjective dimensions of human cognition that are often over-
looked in efforts to identify shared neural and behavioral patterns. 
The Beholder’s Share encapsulates this individuality and provides 
a framework within which to explore how personal history, con-
text, and intrinsic traits shape perception. By systematically stud-
ying responses to works of art that differ in their capacity to evoke 
subjective interpretation, we begin to characterize the unique 
nature of our human experience.   

Materials and Methods

Study 1: Captions.
Stimuli. Participants saw 164 paintings that were either representational or 
abstract (82 per category). Representational paintings depicted a recognizable 
object, person, or scene; abstract paintings depicted no recognizable objects. 
Paintings were chosen from abstract expressionist artists, who had been rep-
resentational painters early in their careers. Thus, we were able to use representa-
tional and abstract paintings from the same artist, balancing across categories 
visual features associated with the artist’s style (SI Appendix, Fig. S1).
Captions task. To quantify differences in semantic responses to paintings, we 
asked an independent sample of 30 MTurk participants to describe each painting 
as “one would for a friend” in 280 characters or less (Fig. 1B). Participants were 
given no time limit and were not restricted to native English speakers. MTurk 
participants were restricted to those with a 90% approval rating or above. Captions 
were verified for relevance (i.e., participants did not copy and paste an irrele-
vant phrase across all paintings). All procedures were preapproved by Columbia 
University’s Institutional Review Board and all participants consented.
Independent abstraction ratings. Abstraction ratings of each painting were 
obtained in a separate set of 10 participants, queried using MTurk. participants 
saw each painting, one at a time, and rated how abstract the painting was on a scale 
from 1 to 7. Participants were not restricted to native English speakers, and there was 
no time limit in the task. Each painting’s abstraction rating was first mean-centered 
by subject and then averaged across all participants for each painting.
Computing semantic dissimilarity of captions. To quantify differences in seman-
tic responses to paintings, we asked an independent set of participants (n = 30) 
to give a caption for each painting. We then extracted each caption’s semantic 
vector, a numerical representation in semantic space, using the Google Sentence 
Encoder, a language processing model optimized to encode sentences or short 
phrases (48). We then computed the cosine distance between each subject’s 
caption, resulting in a subject x subject RDM for each painting. The median of 
this RDM became the painting’s semantic dissimilarity value. We then correlated 
this dissimilarity value with the perceived abstraction level of each painting, as 
collected from a different set of participants.
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Study 2: fMRI.
Participants. We tested 29 participants from in and around the Columbia area 
who answered an advertisement from a flier posted around campus or from a 
recruitment website. Participants were paid $25 dollars per hour. All procedures 
were preapproved by Columbia University’s Institutional Review Board. Informed 
consent was obtained from all participants.
Stimuli. Participants saw the same stimuli as in the captions task.
fMRI acquisition. MRI data were collected on a 3 T Siemens Magnetom Prisma 
scanner with a 64-channel head coil. Functional images were acquired using 
a multiband echo-planer imaging sequence (repetition time = 1.5 s, echo 
time = 30 ms, flip angle = 65˚, acceleration factor = 3, voxel size = 2 mm 
iso). Sixty nine oblique axial slices (14˚ transverse to coronal) were acquired in 
an interleaved order and spaced 2 mm to achieve full brain coverage. Whole-
brain high resolution (1 mm iso) T1-weighted structural images were acquired 
with a magnetization-prepared rapid acquisition gradient-echo sequence. Field 
maps consisting of 69 oblique axial slices (2 mm isotropic) were collected to aid 
registration.
Construal-level task. Participants viewed 164 abstract and representational 
paintings and sorted each into a gallery opening in the near or far future. 
(SI Appendix, Fig. S1). Each subject completed 164 trials equally divided between 
four runs (41 trials per run). Each trial lasted a total of 6.5 s and consisted of a 
viewing phase (4 s) and a choice phase (2.5 s). In the modeling below, we con-
sidered the full 6.5 s period when measuring neural responses. Each trial was 
separated by a jittered intertrial interval drawn from an exponential distribution 
with a mean of 3. If the value generated was below 1 or above 12, it was redrawn. 
In the viewing phase, a painting appeared on the screen alone for 4 s. Following 
that, the choice phase began, and answer choices appeared below the painting 
for 2.5 s, during which the participants were able to make their choice. The answer 
choices consisted of one near choice and one far choice, randomly presented. The 
near choice option was randomly drawn from three options: 1 d, 2 d, or 3 d, and 
the far choice could be either 1 y, 2 y, or 3 y (SI Appendix, Fig. S2B).
Liking ratings of images (outside of scanner). After completing the construal 
level task in the scanner, participants were presented with the same images out-
side of the scanner on a lab computer. They were then asked to rate how much 
they liked each painting on a scale of 1 to 7. Ratings were then z-scored by subject.
Construal level theory. We imaged participants while looking at abstract and 
representational art and completing a task designed to drive processes of mental 
projection. Construal Level Theory has shown a relationship between abstraction 
and future thought, such that objects or events occurring farther in the future are 
mentally represented more abstractly, and conversely, more abstract objects and 
events are thought of as more distant (49). This process of mental distancing that 
abstraction evokes involves attention to more internal processes and implies a 
lower reliance on the immediate external environment (SI Appendix, Fig. S2A). 
In a previous behavioral experiment, we found that participants are more likely 
to project abstract art into more distant situations in time or space (5), suggesting 
that abstract art invokes this distancing process, and potentially, more internally 
oriented thought.
Behavioral analysis. We used a linear modeling package made for the program-
ming language R: lme4 (50). We ran a mixed effects logistic regression to model 
the relationship between painting category and psychological distance, while 
controlling for liking of each painting. Our model included Painting Category 
and Liking Rating as fixed effects, and by-subject random intercepts with random 
slopes for the effect of painting category. P-values were obtained by likelihood 
ratio tests of the full model with the effect in question against the model without 
the effect in question. We confirmed that participants mentally project abstract 
art farther into the future than representational art (b(representational) = −0.2, 
CI = [−0.33 to 0.08], P = 0.002).
Imaging analysis. Results included in this manuscript come from preprocess-
ing performed using fMRIPprep 1.1.4 which is based on Nipype 1.1.1. Many 
internal operations of fMRIPrep use Nilearn 0.4.2 mostly within the functional 
processing workflow.

Anatomical data preprocessing. The T1-weighted (T1w) image was cor-
rected for intensity nonuniformity using N4BiasFieldCorrection (51) (ANTs 
2.2.0) and used as T1w reference throughout the workflow. The T1w-reference 
was then skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using 
OASIS as target template. Brain surfaces were reconstructed using recon-all 
(52) (FreeSurfer 6.0.1), and the brain mask estimated previously was refined 

with a custom variation of the method to reconcile ANTs-derived and FreeSurfer 
derived segmentations of the cortical gray-matter of Mindboggle (53). Spatial 
normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 
(54) was performed through nonlinear registration with antsRegistration (ANTs 
2.2.0) (55), using brain-extracted versions of both T1w volume and template. 
Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), 
and gray matter (GM) was performed on the brain-extracted T1w using fast 
(FSL 5.0.9) (56).

Functional data preprocessing. For each of the 4 BOLD runs found per sub-
ject (across all tasks and sessions), the following preprocessing was performed. 
First, a reference volume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using 
mcflirt (FSL 5.0.9) (57, 58). BOLD runs were slice-time corrected using 3dTshift 
from AFNI. The BOLD time-series (including slice-timing correction when applied) 
were resampled onto their original, native space by applying a single, composite 
transform to correct for head-motion and susceptibility distortions. These resam-
pled BOLD time-series will be referred to as preprocessed BOLD in original space, 
or just preprocessed BOLD. The BOLD reference was then coregistered to the 
T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration (59). Coregistration was configured with nine degrees of freedom to 
account for distortions remaining in the BOLD reference. The BOLD time-series 
were resampled to surfaces on the following spaces: fsaverage5. The BOLD time-
series were resampled to MNI152NLin2009cAsym standard space, generating a 
preprocessed BOLD run in MNI152NLin2009cAsym space. Several confounding 
time-series were calculated based on the preprocessed BOLD: framewise dis-
placement (FD), DVARS, and three region-wise global signals. FD and DVARS are 
calculated for each functional run, both using their implementations in Nipype, 
following the definitions by (60). The three global signals are extracted within 
the CSF, the WM, and the whole-brain masks. Additionally, a set of physiolog-
ical regressors were extracted to allow for component-based noise correction 
(CompCor) (61). Principal components are estimated after high-pass filtering the 
preprocessed BOLD time-series (using a discrete cosine filter with 128 s cut-off) 
for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
Six tCompCor components are then calculated from the top 5% variable voxels 
within a mask covering the subcortical regions. This subcortical mask is obtained 
by heavily eroding the brain mask, which ensures that it does not include cortical 
GM regions. For aCompCor, six components are calculated within the intersection 
of the aforementioned mask and the union of CSF and WM masks calculated in 
T1w space, after their projection to the native space of each functional run (using 
the inverse BOLD-to-T1w transformation). The head-motion estimates calculated 
in the correction step were also placed within the corresponding confounds file. 
All resamplings can be performed with a single interpolation step by composing 
all the pertinent transformations (i.e., head-motion transform matrices, suscep-
tibility distortion correction when available, and coregistrations to anatomical 
and template spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize 
the smoothing effects of other kernels (62). Nongridded (surface) resamplings 
were performed using mri_vol2surf (FreeSurfer).
Univariate analysis.

Predetermined contrasts. We conducted a generalized linear model (GLM) 
analysis on the art distance task data. The first model had the following regressors 
of interest: 1) The onsets of abstract paintings 2) the onsets of representational 
paintings. To account for changes in BOLD activity due to reaction time, we also 
included the same onsets and duration of each trial parametrically modulated by 
reaction time (which was mean-centered by run). We also included the onsets of 
missed trials as an additional regressor. Duration for each trial was 6.5 s.

GLM model estimation and correction for multiple comparisons. All GLM 
models were estimated using FSL’s FEAT. The first-level time-series GLM analysis 
was performed for each run per participant using FSL’s FILM. The first-level con-
trast images were then combined across runs per participant using fixed effects. 
The group-level analysis was performed using FSL’s mixed effects modeling tool 
FLAME1. Group-level maps were corrected to control the familywise error rate in 
one of two ways: For whole-brain correction, we used cluster-based Gaussian 
random field correction for multiple comparisons, with an uncorrected cluster-
forming threshold of z = 2.3 and corrected extent threshold of P < 0.05.D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 C

O
L

U
M

B
IA

 U
N

IV
E

R
SI

T
Y

 o
n 

A
pr

il 
7,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
12

8.
59

.2
22

.1
07

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2413871122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2413871122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2413871122#supplementary-materials


PNAS  2025  Vol. 122  No. 15 e2413871122� https://doi.org/10.1073/pnas.2413871122 7 of 8

BOLD cross-subject dissimilarity.
Signal Extracted. For each subject, we extracted the BOLD time series using 

Nilearn’s transform function. This function regresses out confounds obtained 
from fMRI prep and z-scores the signal across each run. We shifted our stimulus 
labels by 4.5 s to account for hemodynamic lag. The BOLD response to a specific 
painting was the average BOLD response across all timepoints that the specific 
painting was on the screen.

Whole brain dissimilarity. We measured cross-subject dissimilarity in 
brain responses to each painting individually. To get a whole brain dissimilarity 
measure, we extracted the BOLD time series for each subject and each run using 
NiftiMasker, which parcels the brain into regions from the Harvard Oxford Atlas, 
and extracts an average signal across voxels from each region (14). For each paint-
ing, we averaged the activity in each parcel across the timepoints that painting was 
on the screen for each subject. These average activations create a pattern of activity 
across the brain for each subject in response to an individual painting. We then 
computed the dissimilarity (1-Pearson’s r) between each subject’s pattern of activ-
ity for each painting, resulting in a subject x subject RDM for each painting. We 
then took the median of this matrix as our cross-subject dissimilarity measure for 
each painting. Finally, we compared the distribution of dissimilarities for abstract 
paintings with the distribution of dissimilarities for representational paintings, 
using an independent-samples t test. We also correlated the dissimilarity value 
for each painting with the painting’s average abstraction level rating, obtained 
from a separate set of participants.

Dissimilarity per region. To understand where in the brain abstract paint-
ings elicited more variable activity than representational paintings, we computed 
regional cross-subject dissimilarity in BOLD response patterns in selected ROIs. 
Response patterns consisted of activation in each voxel in the respective ROI 
averaged over the time points that the stimulus was on the screen. We then 
computed the dissimilarity (1-Pearson’s r) between each subject’s pattern of 
activity for each painting, resulting in a subject x subject RDM for each painting, 
and take the median of this matrix as our cross-subject dissimilarity measure for 
each painting. Finally, we compared the distribution of dissimilarities for abstract 
paintings with the distribution of dissimilarities for representational paintings, 
using an independent-samples t-test. We then modeled the effect of abstraction 
level on dissimilarity using linear regression, controlling for mean activation in 
each region. We performed this analysis for each ROI tested and corrected for 
multiple comparisons using the False Discovery Rate method (63).

Mean activation in the region. We computed average activation in each 
region for each painting as the average activation across all voxels in the region, 

averaged across participants. We then used this per-painting value as a regressor 
in our models of regional dissimilarity, to control for differences in mean activation 
of the region.

ROI selection. We selected regions from the Harvard Oxford Atlas involved 
in processes that comprise art viewing. To test the hypothesis that differences in 
activity across participants might be due to differences in low-level visual informa-
tion content, we selected regions in early visual cortex–the occipital pole, occipital 
fusiform gyrus, ICC, and the SCC. We also hypothesized that participants might 
be imputing objects, faces, or scenes onto the abstract paintings. This should 
result in dissimilarity in areas involved in face recognition, object recognition, and 
scene construction. These regions included the temporal occipital fusiform cortex, 
the posterior temporal fusiform cortex, the anterior temporal fusiform cortex, 
the temporal occipital inferior temporal gyrus, posterior inferior temporal gyrus, 
anterior inferior temporal gyrus, the posterior parahippocampal cortex, and the 
anterior parahippocampal cortex (SI Appendix, Fig. S4). To test our third hypoth-
esis, that people are using higher-level cognitive processes to impart meaning 
onto abstract art, we looked at two core nodes of the DMN—the PC, shown to vary 
with varying interpretations of a narrative (15), and the FMC, which overlaps to the 
vmPFC, a region involved in subjective value (64) as well as aesthetic response (7).
Model of regional cross-subject dissimilarity. We ran a multivariate linear 
regression to model the relationship between abstraction level of painting and 
cross-subject dissimilarity in patterns of activation in a region of interest, while 
controlling for BOLD activation in that region. (Cross-subject Dissimilarity ~ 
Abstraction Rating of Painting + Average BOLD activation). P-values were obtained 
by likelihood ratio tests of the full model with the effect of abstraction level against 
the model without the effect of abstraction level.

Data, Materials, and Software Availability. Some study data have been 
deposited in OSF (65). All other study data are included in the article and/or 
SI Appendix.

ACKNOWLEDGMENTS. We thank Kendrick Kay, Yaacov Trope, Mariam Aly, and 
Lila Davachi for helpful conversations and feedback. Portions of this manuscript 
were also used in the PhD dissertation of coauthor C.D.

Author affiliations: aDepartment of Psychology, Columbia University, New York, NY 10027; 
bZuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027; 
cDepartment of Neuroscience, Columbia University, New York, NY 10027; and dKavli 
Institute for Brain Science, New York, NY 10027

1.	 E. H. Gombrich, Art and Illusion: A Study in the Psychology of Pictorial Representation. (1960).
2.	 E. R. Kandel, Reductionism in Art and Brain Science: Bridging the Two Cultures (Columbia University 

Press, 2016).
3.	 A. Riegl, The Group Portraiture of Holland (Getty Research Institute for the History of Art and the 

Humanities, 1999).
4.	 A. K. Seth, From unconscious inference to the Beholder’s Share: predictive perception and human 

experience. Eur. Rev. 27, 378–410 (2019).
5.	 C. Durkin, E. Hartnett, D. Shohamy, E. R. Kandel, An objective evaluation of the beholder’s response 

to abstract and figurative art based on construal level theory. PNAS. Proc. Natl. Acad. Sci. U. S. A. 117, 
19809–19815 (2020).

6.	 K. Iigaya, S. Yi, I. A. Wahle, K. Tanwisuth, J. P. O’Doherty, Aesthetic preference for art can be predicted 
from a mixture of low- and high-level visual features. Nat. Hum. Behav. 5, 743–755 (2021).

7.	 K. Iigaya et al., Neural mechanisms underlying the hierarchical construction of perceived aesthetic 
value. Nat. Commun. 14, 127 (2023).

8.	 G. Durán-Barraza, D. Ghadiyaram, M. A. Peterson, Effects of conceptual titles on the aesthetic 
appreciation of artistic photographs. Empir. Stud. Arts 41, 157–187 (2023).

9.	 H. Kawabata, S. Zeki, Neural correlates of beauty. J. Neurophysiol. 91, 1699–1705 (2004).
10.	 O. Vartanian, V. Goel, Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport 

15, 893–897 (2004).
11.	 S. Zeki, Inner Vision: An Exploration of Art and the Brain. (1999).
12.	 C. Baldassano et al., Discovering event structure in continuous narrative perception and memory. 

Neuron 95, 709–721.e5 (2017).
13.	 J. Chen et al., Shared memories reveal shared structure in neural activity across individuals.  

Nat. Neurosci. 20, 115–125 (2017).
14.	 E. S. Finn et al., Idiosynchrony: From shared responses to individual differences during naturalistic 

neuroimaging. NeuroImage 215, 116828 (2020).
15.	 M. Regev, C. J. Honey, E. Simony, U. Hasson, Selective and invariant neural responses to spoken and 

written narratives. J. Neurosci. 33, 15978–15988 (2013).
16.	 K. Vodrahalli et al., Mapping between fMRI responses to movies and their natural language 

annotations. NeuroImage 180, 223–231 (2018).
17.	 Y. Yeshurun et al., Same story, different story: The neural representation of interpretive frameworks. 

Psychol. Sci. 28, 307–319 (2017).

18.	 M. H. Cohen et al., Processing emotion from abstract art in frontotemporal lobar degeneration. 
Neuropsychologia 81, 245–254 (2016).

19.	 E. Redcay, D. Moraczewski, Social cognition in context: A naturalistic imaging approach. NeuroImage 
216, 116392 (2020).

20.	 M. Nguyen, T. Vanderwal, U. Hasson, Shared understanding of narratives is correlated with shared 
neural responses. NeuroImage 184, 161–170 (2019).

21.	 E. A. Vessel, A. I. Isik, A. M. Belfi, J. L. Stahl, G. G. Starr, The default-mode network represents 
aesthetic appeal that generalizes across visual domains. Proc. Natl. Acad. Sci. U.S.A. 116, 
19155–19164 (2019).

22.	 E. A. Vessel, N. Rubin, Beauty and the beholder: Highly individual taste for abstract, but not  
real-world images. J. Vis. 10, 18 (2010).

23.	 D. Hassabis, D. Kumaran, E. A. Maguire, Using imagination to understand the neural basis of 
episodic memory. J. Neurosci. 27, 14365–14374 (2007).

24.	 C. Murphy et al., Distant from input: Evidence of regions within the default mode network 
supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage 171, 
393–401 (2018).

25.	 J. Smallwood et al., The default mode network in cognition: A topographical perspective. Nat. Rev. 
Neurosci. 22, 503–513 (2021).

26.	 Y. Yeshurun, M. Nguyen, U. Hasson, The default mode network: Where the idiosyncratic self meets 
the shared social world. Nat. Rev. Neurosci. 22, 181–192 (2021).

27.	 R. Mars et al., On the relationship between the “default mode network” and the “social brain”.  
Front. Hum. Neurosci. 6, 189 (2012).

28.	 T. D. Albright, On the perception of probable things: Neural substrates of associative memory, 
imagery, and perception. Neuron 74, 227–245 (2012).

29.	 A. Schlack, T. D. Albright, Remembering visual motion: Neural correlates of associative plasticity and 
motion recall in cortical area MT. Neuron 53, 881–890 (2007).

30.	 K. M. Darda, A. Chatterjee, The impact of contextual information on aesthetic engagement of 
artworks. Sci. Rep. 13, 4273 (2023).

31.	 A. P. Christensen, E. R. Cardillo, A. Chatterjee, What kind of impacts can artwork have on viewers? 
Establishing a taxonomy for aesthetic impacts Br. J. Psychol. 114, 335–351 (2023).

32.	 Y. N. Kenett, E. R. Cardillo, A. P. Christensen, A. Chatterjee, Aesthetic emotions are affected by context: 
A psychometric network analysis. Sci. Rep. 13, 20985 (2023).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

7,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

12
8.

59
.2

22
.1

07
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2413871122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2413871122#supplementary-materials


8 of 8   https://doi.org/10.1073/pnas.2413871122� pnas.org

33.	 C. Damiano et al., Anger is red, sadness is blue: Emotion depictions in abstract visual art by artists 
and non-artists. J. Vis. 23, 1 (2023).

34.	 J. E. Else, J. Ellis, E. Orme, Art expertise modulates the emotional response to modern art, especially 
abstract: An ERP investigation. Front. Hum. Neurosci. 9, 525 (2015).

35.	 J. van Paasschen, E. Zamboni, F. Bacci, D. Melcher, Consistent emotions elicited by low-level visual 
features in abstract art. Art Percept. 2, 99–118 (2014).

36.	 J. van Paasschen, F. Bacci, D. P. Melcher, The influence of art expertise and training on emotion and 
preference ratings for representational and abstract artworks. PLOS ONE 10, e0134241 (2015).

37.	 A. Bakkour et al., The hippocampus supports deliberation during value-based decisions. eLife 8, 
e46080 (2019).

38.	 J. I. Gold, M. N. Shadlen, The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 
(2007).

39.	 M. N. Shadlen, D. Shohamy, Decision making and sequential sampling from memory. Neuron 90, 
927–939 (2016).

40.	 M. N. Shadlen, R. Kiani, Decision making as a window on cognition. Neuron 80, 791–806 (2013).
41.	 I. Charest, N. Kriegeskorte, The brain of the beholder: Honouring individual representational 

idiosyncrasies. Lang. Cogn. Neurosci. 30, 367–379 (2015).
42.	 I. Charest, R. A. Kievit, T. W. Schmitz, D. Deca, N. Kriegeskorte, Unique semantic space in the brain of 

each beholder predicts perceived similarity. Proc. Natl. Acad. Sci. U.S.A. 111, 14565–14570 (2014).
43.	 Y.-Q. Zheng et al., Accurate predictions of individual differences in task-evoked brain activity from 

resting-state fMRI using a sparse ensemble learner. NeuroImage 259, 119418 (2022).
44.	 M. D. Rosenberg, B. J. Casey, A. J. Holmes, Prediction complements explanation in understanding 

the developing brain. Nat. Commun. 9, 589 (2018).
45.	 E. S. Finn, M. D. Rosenberg, Beyond fingerprinting: Choosing predictive connectomes over reliable 

connectomes. Neuroimage 239, 118254 (2021).
46.	 E. S. Finn, R. Todd Constable, Individual variation in functional brain connectivity: Implications for 

personalized approaches to psychiatric disease. Dialogues Clin. Neurosci. 18, 277–287 (2016).
47.	 D. C. Gruskin, M. D. Rosenberg, A. J. Holmes, Relationships between depressive symptoms and brain 

responses during emotional movie viewing emerge in adolescence. NeuroImage 216, 116217 (2020).
48.	 D. Cer et al., Universal Sentence Encoder in In Submission to: EMNLP Demonstration (Brussels, 

Belgium, 2018).
49.	 N. Liberman, Y. Trope, The psychology of transcending the here and now. Science 322, 1201–1205 (2008).

50.	 D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4. J. Stat. 
Softw. 67, 1–48 (2015).

51.	 N. J. Tustison et al., N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 
(2010).

52.	 A. M. Dale, B. Fischl, M. I. Sereno, Cortical surface-based analysis: I. segmentation and surface 
reconstruction. NeuroImage 9, 179–194 (1999).

53.	 A. Klein et al., Mindboggling morphometry of human brains. PLOS Comput. Biol. 13, e1005350 
(2017).

54.	 V. Fonov, A. Evans, R. McKinstry, C. Almli, D. Collins, Unbiased nonlinear average age-appropriate 
brain templates from birth to adulthood. NeuroImage 47, S102 (2009).

55.	 B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, Symmetric diffeomorphic image registration with 
cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain.  
Med. Image Anal. 12, 26–41 (2008).

56.	 Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through a hidden Markov random 
field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

57.	 O. Esteban et al., fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat. Methods 16, 
111–116 (2019).

58.	 M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate 
linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

59.	 D. N. Greve, B. Fischl, Accurate and robust brain image alignment using boundary-based 
registration. NeuroImage 48, 63–72 (2009).

60.	 J. D. Power et al., Methods to detect, characterize, and remove motion artifact in resting state fMRI. 
NeuroImage 84, 320–341 (2014).

61.	 Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).

62.	 C. Lanczos, Evaluation of noisy data. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1, 76–85 (1964).
63.	 Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to 

multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
64.	 V. S. Chib, A. Rangel, S. Shimojo, J. P. O’Doherty, Evidence for a common representation of decision 

values for dissimilar goods in human ventromedial prefrontal cortex. J. Neurosci. 29, 12315–12320 
(2009).

65.	 C. Durkin, Data from “Beholder's Share”. OSF. https://osf.io/hxuvf/. Deposited 14 March 2025.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

7,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

12
8.

59
.2

22
.1

07
.

https://osf.io/hxuvf/


Supporting Information for

The Beholder’s Share: Bridging Art and Neuroscience to Study
Individual Differences in Subjective Experience

Celia Durkin1,2 *, Marc Apicella1, Christopher Baldassano1, Eric Kandel 2,3 *,
Daphna Shohamy1,2,3

Email: celia.durkin@gmail.com, erk5@columbia.edu

This PDF file includes:

Supporting text
Figures S1 to S9
Tables S1 to S2
SI References

1



Supplementary Text

Effect of abstraction on dissimilarity when controlling for mean activation
We ran a multivariate linear regression to model the relationship between abstraction level of
painting and cross-subject dissimilarity in patterns of activation in a region of interest, while
controlling for BOLD activation in that region. In the Occipital Pole, we do not find a significant
difference between the full model and the null model (F (158,1)=.202, p=.65). In the Precuneus,
we find a significant difference between full model and the null model ((F (158,1)=19, p<.001),
such that abstraction rating significantly predicts dissimilarity (b=.015, sd=.004, p<.001). In the
FMC, we find a significant difference between full model and the null model (F (158,1)=6.12,
p<.05), such that abstraction rating significantly predicts dissimilarity (b=.005, sd=.002, p<.01).
Figure S5 shows correlations between abstraction level of painting and cross-subject
dissimilarity, the semi-partial correlation of abstraction rating and cross-subject dissimilarity, and
the correlation between average BOLD response and cross-subject dissimilarity.
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Fig S1. Low-level features do not differ between abstract and figurative paintings. RGB 
images were transformed into HSV values, using python’s skimage toolbox. Seven features were 
computed using functions from the python skimage toolbox.  This included entropy, and the means 
and standard deviations of brightness, saturation, and hue.  We see no differences between low 
level visual features in abstract and figurative images.  
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Fig. S2. Measuring individual differences in semantic meaning of captions. Subjects were 
asked to describe each painting in 280 characters or less. Each subject’s caption was then 
transformed into a feature vector using the Google Sentence Encoder (31).  To measure semantic 
dissimilarity between each subject’s response, we computed the cosine distance between each 
subject’s feature vector, resulting in a subject x subject RDM for each painting.  The median of 
this RDM became that painting’s cross-subject dissimilarity value.  We then looked at the 
relationship between the cross-subject dissimilarity value and the abstraction rating of the 
painting.   
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Fig. S3. fMRI Task design and behavioral results. A. Construal level theory. To measure 
differences in cognitive states elicited by abstract and representational art, we used Construal Level 
Theory to design our task. Construal Level Theory has shown a relationship between abstraction 
and future thought, such that objects or events occurring farther in the future are mentally 
represented more abstractly, and conversely, more abstract objects and events are thought of as 
more distant (Trope, 2008). B. fMRI Task Structure. In an fMRI scanner, subjects saw abstract 
and representational paintings and were asked to sort each into a gallery opening in the next few 
days or a gallery opening in the next few years.  Each subject completed 164 trials equally divided 
between four runs (42 trials per run).  Each trial lasted a total of 6.5 seconds and consisted of a 
viewing phase (4 s) and a choice phase (2.5 s). In the modeling below, we considered the full 6.5 
second period when measuring neural responses. Each trial was separated by a jittered inter-trial-
interval (ITI) drawn from an exponential distribution with a mean of 3. If the value generated was 
below 1 or above 12, it was redrawn.  In the viewing phase, a painting appeared on the screen 
alone for 4 seconds.  Following that, the choice phase began, and answer choices appeared below 
the painting for 2.5 seconds, during which the subjects were able to make their choice.  C. 
Behavioral (construal level) results. Abstract art elicits more temporal distance than 
representational art, as it is more likely than representational art to be placed in a far gallery. 
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Fig. S4. BOLD Signal Extraction for Regional Dissimilarity Analysis.  For each subject, we 
extracted the BOLD time series using Nilearn’s transform function. This function regresses out 
confounds obtained from fMRI prep, and z-scores the signal across each run.  We shifted our 
stimulus labels by 4.5 seconds to account for hemodynamic lag.  The BOLD response to a 
specific painting was the average BOLD response across all timepoints that the specific painting 
was on the screen. 
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Fig. S5. Examination of the relationship between abstraction rating of painting, mean 
BOLD activation, and cross-subject dissimilarity. Rows are results for different brain regions. 
(Left column) Relationship between Abstraction and Dissimilarity. The left column shows the 
overall correlation between abstraction level of painting and dissimilarity.  We see a positive 
correlation in the Precuneus and Frontal Medial Cortex, and a non-significant negative 
correlation in the Occipital Pole. (Middle Column) Semi Partial Correlation of Abstraction on 
Dissimilarity. To understand how much of the correlation between abstraction rating and 
dissimilarity was affected by magnitude of BOLD activation, we computed the semi-partial 
correlation, partialling out magnitude of activation from average abstraction rating (avg. abs 
rating*).   We see that the effect of abstraction on dissimilarity in the Precuneus and Frontal 
Medial Cortex holds even while controlling for mean activation.    (Right column) Correlation 
between Activation and Dissimilarity. The right column shows the correlation between mean 
BOLD response and Dissimilarity. Mean BOLD response was computed as an average BOLD 
response in all voxels in a region for all subjects for a particular painting. We find negative 
correlations between response and dissimilarity in the Occipital Pole and Frontal Medial Cortex, 
and a positive correlation in the Precuneus. This suggests that the dissimilarity in the Precuneus 
and Frontal Medial Cortex is not solely a product of less activation. 
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Fig. S6. Correlations between visual features of a painting and its cross-subject 
dissimilarity.  Figure shows this relationship in the Occipital Pole, Precuneus, and Frontal Medial 
Cortex. Each point represents a painting, colored by abstraction rating (lighter colors more 
abstract). Cross-subject dissimilarity is not significantly correlated with any low-level features of 
the art.  
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Fig. S7. Correlations between Cross-subject Dissimilarity in Brain Activity and Cross-
subject Dissimilarity in Liking of a painting. Top row: Correlations between cross-subject 
dissimilarity in the brain (x-axis) and cross-subject dissimilarity in liking of a painting (y-axis) for 
specified regions of interest. Correlations were computed by computing spearman’s rho between 
the vectorized bottom triangle of the subject by subject cross-subject dissimilarity matrix and the 
vectorized bottom triangle of the subject by subject liking matrix for each painting.  Bottom row: 
correlation compared to a null distribution of correlations, obtained by shuffling the brain-
dissimilarity values (1,000 permutations). Each permutation randomly shuffled the brain-
dissimilarity values and correlated this new vector with the liking values. We find that in the 
Frontal Medial Cortex, distance between subject’s patterns of brain activity significantly correlates 
with distance between their liking of the painting. We do not find this in the Precuneus or the 
Occipital Pole.  
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Fig. S8. Cross-subject dissimilarity in all regions tested. A. Comparisons of cross-subject 
dissimilarity in neural representations between abstract and figurative paintings. Error bars 
represent standard error. B. Model predicting abstraction given dissimilarity. Dissimilarity 
coefficients from linear regression model predicting abstraction of the painting by painting’s 
dissimilarity, adjusting for average activation in the region. * indicates regions with significant 
(q<0.05) relationship between abstraction level and cross-subject dissimilarity, corrected for 
multiple comparisons of all regions tested (17 total) using FDR correction.  
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Fig. S9. Whole Brian Analysis for Contrast of Abstract and Representational art. Sagittal 
(left) and coronal (center) and axial (right) view of activation superimposed over a template brain. 
Results for the contrast Representational > Abstract revealed more activation in the hippocampus 
and ventral visual stream. Results for the contrast Abstract > Representational revealed more 
activation in the primary visual cortex and dorsal visual stream. The map was cluster corrected for 
familywise error rate at a whole-brain level with an uncorrected cluster-forming threshold of z = 
2.3 and corrected extent of p<0.05.  
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Table S1. 
Regression table for model run predicting cross-subject dissimilarity in activation for different 
regions from abstract level of painting, adjusting for average BOLD activation in the region. 
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Table S2. BOLD Activation Clusters for Each Contrast. 
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